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Abstract

Although immuno-chromatographic assays on mem-
brane strips have been employed at points of care
for more than 20 years, their applications have be-
come limited to qualitative analyses of the analytes
present at relatively high concentrations in sam-
ples. An evolution of technology in this field will be
required in order to achieve the capability of detec-
tion sufficient for early diagnosis as well as a degree
of quantification sufficient to allow for the monitor-
ing of the disease progress, a digital display of an-
alytical results, and automatic recording and cor-
relation in a database. In order to attain proper sen-
sitivity, the colloidal gold normally used as a tracer
for colorimetry may be replaced with different signal
generators, including fluorophores, magnetic beads,
electrochemiluminescent substances, and enzymes.
The means by which antigen-antibody binding in the
assay can be quantified as a measurable signal also
varies, depending on the tracer employed and the
transduction technology available. Indeed, we have
devoted ourselves for more than ten years to the
investigation of combinatorial substitutes consisting
of novel immunosensors that fulfill the demands in-
herent to medical diagnostics. In this review, select-
ed immunosensor technologies developed in our
laboratories are introduced, along with their detec-
tion principles and analytical characteristics. 

Keywords: Immuno-chromatography, Quantification of

analyte concentration, Performance characteristics, Signal
generators, Transducers

Introduction

Biomarkers including hormones, proteins, and
infectious organisms indicating symptoms or diseases
of the human body are normally present at rather low
concentrations in specimens (e.g., blood, urine, and
saliva), and can be measured via biological reactions,
including antigen-antibody binding and enzyme-
substrate reactions1-3. Typically, the receptor, or anti-
body, binds its counterpart, or antigen, with extre-
mely high specificity as well as high affinity, allow-
ing for good detection capability when utilized as a
binding reagent for assays4,5. Such antibody charac-
teristics lend themselves to the construction of im-
muno-diagnostic systems that should prove to be
valuable for early disease diagnosis, facilitating
effective patient treatment. The majority of diagno-
stic systems, however, require delicate and precise
handling of reagents and equipment, as well as expert
knowledge of operation6-8. This limits their use in
laboratory settings. 

With regard to recent immunoassay trends, bio-
markers are increasingly being measured at the sites
of patient care, including the doctor’s office and em-
ergency room, allowing for rapid estimates of the state
or progress of an illness, and even at home, for the
purposes of self-diagnosis9,10. Toward this end, an im-
muno-analytical system that does not require a com-
plex procedure, is easy to operate, and can be com-
pleted in a relatively short period of time is required.
A device with such analytical performances may
prove possible with the concept of immuno-chroma-
tography, in which a porous membrane strip is utiliz-
ed as a solid matrix for the immobilization of the
antibody (usually), or the antigen when required11-13.
Upon the absorption of an aqueous sample from the
bottom of the strip, the medium transports the an-
alyte, i.e., the substance to be measured, via capillary
action through the pores of the membrane to the anti-
body immobilization site. Antigen-antibody binding
occurs here, and the unreacted components are se-
parated by the flow. As this technology utilizes a late-
ral flow along the membrane strip, the analyte trans-
fer is accelerated in order to complete the reaction in
a relatively short time (e.g., on the order of minut-
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es)14,15. Further, the in situ separation allows for one-
step analysis, in which the addition of the sample is
the only step that the user need perform.

The demands inherent to point-of-care testing
(POCT) systems are well reflected by the large de-
mand for self-diagnostic devices, particularly in the
context of pregnancy and ovulation16,17. As the re-
mote monitoring of personal health status might also,
in the near future, be conducted over the internet,
POCT systems for a variety of conditions may be-
come an essential element in public health manage-
ment. However, the home-version rapid test kits
allow only for qualitative analyses, generating color
signals from colloidal gold tracer that are perceptible
to the naked eye (refer to Figure 1)18. This feature is
definitely insufficient for the analysis of most bio-
markers, particularly those of adult diseases, for
which quantitative analyses for early diagnosis and
progress monitoring are classically constrained. The
gold color can be measured either semi-quantitatively
by reading the number of ladder bars19,20, or quan-
titatively via conversion to optical density using, for
instance, a digital camera and attendant software21,22.
Nevertheless, the test kits tend to exhibit a sensitivity
lower than that associated with the traditional en-
zyme-linked immunosorbent assay (ELISA)23,24. 

Other signal generators evidencing sensitivities
comparable to that of the enzyme used in ELISA in-

clude fluorophores, magnetic beads, and electro-che-
miluminescent (ECL) substances such as ruthenium
and osmium (refer to Figure 1). Fluorophores have
been extensively employed as tracer materials in a
variety of biochips25-27 and also in immunosensors for
the rapid detection of medical biomarkers and agents
associated with acts of terrorism28,29. Magnetic beads,
which were employed originally for the separation of
cells30,31, have now been applied to biomolecular de-
tection applications, via their labeling to different
binders (e.g., antibodies)32,33. Their detection capa-
bility in analytical applications has yet to be con-
firmed in clinical applications, although the potential
for this is increasing with the advent of more sophi-
sticated magnetic sensor technologies. ECL pro-
ducers also provide a highly sensitive signal due to
the low background from the medium and analytical
environment under dark conditions34-36. 

As exemplified in ELISA, enzymes can be used as
an alternative tracer material, which can be applied to
immunosensors for POCT24,37-39. The tracer generates
an enhanced signal resultant from catalytic action,
and also provides different signal types, which are
measurable with comparatively simple detectors (e.g.,
based on photometry27, chemiluminometry33, and
electrochemistry34; refer to Figure 1), depending on
the substrate as well as the enzyme used. The enzyme
reaction, as a different feature from those of other
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predicated on immuno-chromatography. The detection methods demonstrated in our laboratory were underlined and, thus, have
been introduced in this review. See text for details.



tracers, should be conducted separately for signal
generation following the completion of the antigen-
antibody binding reactions. A standard protocol of
the heterogeneous immunoassay, then, requires wash-
ing steps for the separation of the immune complexes
formed on the solid surfaces from the unreacted
reagents. In order to employ this procedure at sites of
care, a novel method of cross-flow immuno-chro-
matography has been developed, in which immuno-
logical binding and the enzyme reaction are sequen-
tially conducted37. The same concept can also be
applied to the silver intensification40 technique, using
colloidal gold as the signal generator.

In the following, selected immunosensor technolo-
gies that can be employed for POCT are introduced
with regard to their detection principles and analy-
tical characteristics. It should be noted that all of the
technologies outlined in this work were developed in
our laboratories.

The Analytical Concept of Immuno-
Chromatography

For POCT, an immuno-chromatography has been
developed using membrane strips as solid matrices
for antibody immobilization13. Tracers employed in
this format are normally colloidal gold or Latex
beads, the colors of which, as a result of assays, can
be detected by the naked eye12,15,18. As a distingui-

shing characteristic of this method from most assays
utilizing an incubation mode, the medium flow rate
invoked by capillary action through the membrane
pores induces the transport of soluble reactants to the
immobilized binding partners41,42. Under such non-
equilibrium conditions, the binding complexes be-
tween antigen and antibodies are formed at the solid
surfaces, and the unbound reagents are immediately
separated by the medium flow. These combined
processes of convective mass transfer and binding
reactions not only shorten the assay time, but also
provide for a one-step sample analysis, without rea-
gent handling11-13. Such membrane strip-based an-
alysis techniques have been initially employed for the
point-of-care examination of symptoms including
pregnancy and ovulation10,17, and recently for the dia-
gnosis of a variety of diseases, including microbial
infections and even acute myocardial infarction43-45.

In a model of this immunoassay method (Figure 2,
left)37, two antibodies binding distinct epitopes pre-
sent on an analyte molecule are utilized: one (detec-
tion antibody) is labeled with a signal generator (e.g.,
colloidal gold), and the other (the capture antibody) is
immobilized onto a solid surface. The labeled anti-
body is placed in a dehydrated state into a glass fiber
membrane for the fabrication of the conjugate release
pad. The capture antibody is dispensed in a line onto
a site on a nitrocellulose (NC) membrane (normally,
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Figure 2. A membrane strip assay system (left) predicated on immuno-chromatography and the concept of analysis (right). The
immuno-chromatographic assay system is comprised of four membrane pads for: sample application, antibody conjugate release,
signal generation, and continuous, medium absorption. For analysis, a sample containing the analyte is introduced into the strip
via capillary action (A) and binding occurs between the analyte and the labeled antibody (B). This binding complex is transferred
by the flow to the nitrocellulose (NC) membrane and then allowed to react with the immobilized antibody for signal generation
(C).



10 µm pore size) using a micro-dispenser. On the
same membrane, a secondary antibody specific to the
detection antibody is also dispensed onto a site above
the capture antibody. A sample application pad is
prepared with a glass fiber membrane which has been
pretreated with a hydrophilic substance, such as
polyvinyl alcohol. The prepared membrane pads are
arranged in order of width from the bottom, in the
following order: sample application pad, conjugate
release pad, signal generation pad, and a cellulose
membrane used as an absorption pad. Finally, a func-
tional immuno-strip is constructed via the partial su-
perimposition of each contiguous membrane strip and
fixation on a plastic film, using double-sided tape.

Using the immuno-strips, an analyte can be mea-
sured merely by the addition of a sample to the appli-
cation pad (Figure 2; right, A). The aqueous medium
migrates into the conjugate release pad via capillary
action, and instantaneously dissolves the labeled
antibody. This antibody then participates in the bind-
ing reaction to form a complex with the analyte in the
liquid phase (right, B). This complex eventually binds
to the capture antibody immobilized on the surfaces
of the nitrocellulose membranes, which provide a
uniform pore and, thus, a liquid-solid interface for re-
producible antigen-antibody binding. As the complex
includes colloidal gold, a color signal visible to the
naked eye is generated in the lower site (test line;
right, C). The unreacted conjugate is transferred by
the flow to the site at which the secondary antibody is
immobilized, and binds to generate a signal from the
upper site (control line). The medium absorption pad

positioned at the top induces a continuous wicking
effect, accumulating the immune complexes with the
immobilized antibodies.

Normally, at approximately 10 minutes after the
application of the sample, the color signals can be
read either by naked eyes (the inset) or by conver-
sions to optical density for quantitation via photome-
tric transduction, and the intensity of the test line is
proportional to the dose of the analyte (Figure 3).
From the dose-response curve, the detection limit can
be determined as the concentration of analyte corres-
ponding to the signal value calculated via the multi-
plication of the standard deviation of the signal at
zero dose by three37,46. This capability of the assay is
relatively low with other tracers, such as fluorophores
and enzymes, and this has significantly limited its
analytical application11,34,37. For this reason, detection
frequently does not cover the clinical range of the
minimum analyte concentration required for early di-
sease diagnosis. 

Bar Code Immuno-chromatographic Assay
As a non-instrumental approach, the analyte con-

centration can be semi-quantitatively determined by
simply encoding the dose ranges to different numbers
of a colored ladder bar, provided that the antibody is
immobilized in multiple parallel lines on the signal
generation pad19,47,48. Although this form of semi-
quantitation allows for the direct determination of the
analyte concentration, the color may not be clearly
confined within the defined areas of each ladder bar.
This results in a vague analytical result. This problem
can be circumvented via the introduction of a capture
technology based on streptavidin (SA)-biotin binding
with the highest affinity (a range of 1015 L/mol)
among the biological reactions thus far known49,50.

Utilizing the available methods, investigations have
been conducted to develop a novel bar code version
of the immuno-chromatographic assay19. As a key
component, a heterobifunctional conjugate, which
functions both as the signal generator and capture
reagent of the immune complexes simultaneously,
was employed. This was synthesized via the bio-
tinylation of the detection antibody-gold conjugate in
an optimal ratio toward the antigen-antibody reaction
and SA-biotin binding. A membrane pad employed
for the production of a bar code signal was generated
via the covalent immobilization of streptavidin in a
ladder bar pattern on the surface. As the signal should
be proportional to the concentration of complex be-
tween the heterobifunctional conjugate and the an-
alyte, this system was devised to separate the conju-
gate remaining unreacted with the analyte prior to
signal generation in the assay. To this end, an antigen
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pad was fabricated via the chemical immobilization
of the antigen, i.e., the analyte to be measured (e.g.,
microalbumin in renal disease), on the surfaces of the
NC membranes19. Using these components, a bar
code analytical system was constructed using four
different membrane strips partially superimposed
sequentially, as is shown in Figure 4 (the left).

The bar code pattern of dose response with the
heterobifunctional conjugate can be obtained on the
basis of competition between the conjugate and a
biotinylated antibody for the binding sites of SA
immobilized onto the signal pad (Figure 4). The two
competing components are added to the sample solu-
tion to perform the antigen-antibody reactions with
the analyte molecules (4, left). The aqueous solution
is absorbed from the bottom of the analytical system
via capillary action, then transferred through the anti-
gen pad, in which the unreacted reagents are captured
for separation (4, center). When a low concentrations
of analyte is in the sample, the total amount of im-
mune complexes forming with the biotinylated rea-
gents are so small that no significant competition
occurred on the SA binding sites, and the color may

be restricted within the first bar (‘Low conc.’ in the
right of Figure 4). An increase in analyte concen-
tration would generate a substantial quantity of im-
mune complexes, thus resulting in the competitive
binding of the biotinylated species to SA immobiliz-
ed at extended sites (‘High conc.’). Thus, a bar code
signal representative of a single dose range of analyte
can eventually be produced.

In order to demonstrate the proposed concept, the
bar-coding of different concentrations of human
serum albumin as a model analyte was conducted51,52.
A single number of the colored ladder bar was de-
signed to correspond specifically to a unique analyte
dose range (see Figure 5 for an example). The first
ladder bar used as the control signal appeared consis-
tently, regardless of the level of albumin in the sam-
ple, and the next bar was generated in the presence of
a minimum of 50 µg/mL albumin within a specimen.
This semi-quantitative system was capable of consec-
utively generating additional bars, one by one. From
these results, a semi-quantitative system involving
the bar-coding of the immuno-chromatographic dose
responses can be developed. Under further optimal
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conditions, the numbers of the colored bars (2 to 5
digits) after the assays were able to be matched with
30, 60, 90, and 120 µg/mL minimum analyte concen-
trations, respectively53,54. Such dose responses may
be suitable for the self-monitoring of a clinical indi-
cator, for example, the urinary concentration of hu-

man serum albumin (i.e., microalbumin) necessary
for the diagnosis of renal function in diabetic pati-
ents55,56. 

Conductimetric Membrane Strip
Immunosensor

As colloidal gold is a metal, the gold signal band
forming on the membrane surface in the chromato-
graphic assay allows us to measure the electrical con-
ductivity along the metal particles57,58. As the binding
reaction proceeds, the particles are accumulated re-
petitively between the lateral edges of the signal band
and, thus, the mean distance among them may be
sufficiently short for the formation of an electric cir-
cuit. This accumulation effect would cause a varia-
tion in conduction in proportion to analyte concen-
tration, and a single event of binding might even con-
trol the entire process of signal generation in an ex-
ponential pattern.

In order to measure the electric signals from the
membrane strips, we have explored thick-film elec-
trodes screen-printed on plastic film, which will be
positioned onto the antibody immobilization sites on
the NC membranes (Figure 6). The electrodes, which
are constructed of silver, were patterned in a planar
interdigitated structure in order to ensure a high sig-
nal yield59,60. These electrodes were combined with
the immuno-strip such that the antibody immobilized
onto a membrane site was located proximally to the
electrode. Electrical contacts extending from the sen-
sor portion were printed onto the same plastic film
that functions as an insulator against the aqueous
environment. Electrodes of the same pattern can also
be formed directly on the surface of the membrane,
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using screen-printing technology, upon which the
capture antibody was immobilized61,62. 

In a preliminary test, the antigen-antibody binding
event occurring between the two electrodes, i.e., the
cathode and anode, was measurable as the electrical
conductivity and the signal-to-noise ratio determined
as a sensitivity indicator, however, was lower than
that determined by the colorimetry. Such poor analy-
tical performance resulted from impaired electron
transfer along the gold particles, which can be induc-
ed by the presence of ionic protein molecules, i.e.,
immunoglobulin and casein as blocking agents, sur-
rounding each of the particles (Figure 7, left). As pro-
tein molecules behave in a fashion similar to that of
amorphous semiconductors63,64, they may function as
a barrier against conduction. In an effort to improve

this inefficient electron transfer, polymeric conductor
molecules (e.g., polyaniline, PANI)65,66 were intro-
duced to the gold surface to bridge the neighboring
particles as to the charge transfer (Figure 7, right)66.
The degree of protrusion of the polymer strands out-
side of the surface was controllable by the chemical
concentration applied and the molecular dimension.

The concept of molecular wire for electrical con-
nection was evaluated using the constructed con-
ductimetric immunosensor, and its analytical per-
formance under optimal conditions was then compar-
ed with that of the conventional colorimetric system
(Figure 8). The colloidal gold with PANI bound to its
surface evidenced an amplification of the electric
signal by a maximum of approximately 3 times that
observed with the plain gold without the polymer (8,
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left). This indicated that the average distance between
the two conducting sites was shortened by the addi-
tion of PANI, which consequently augmented elec-
tron transfer by hopping67-69. It is also conceivable
that the presence of the polymer strands on the sur-
faces augmented the fractal dimension, thereby resul-
ting in elevated interfacial capacitance and, conse-
quently, a gain in conduction68. Finally, the novel
colloidal gold with PANI was employed as a tracer, to
generate both conductimetric and colorimetric signals
to compare them with regard to sensitivity expressed
in the signal-to-noise ratio (8, right). Although the
conductimetric detection, as compared to the results
of the colorimetry, consistently enhanced the signal
from the immunosensor at a high analyte concen-
tration range19,56, the detection limit was not signi-
ficantly different between the two detection methods.
This may result from the presence of a barrier against
electron transfer, probably due to a wide average
distance between gold particles under conditions of
low gold density. Nevertheless, the conductimetric
immunosensor provides a relative advantage, in that
the conduction can be measured using an ordinary
electric detector that is stable, accurate, relatively
cheap, and simple to operate70. 

Electro-Chemiluminescent Immunosensor
A high sensitivity of the immuno-chromatographic

assay may be achieved by employing ECL (Figure 9)
tracer combined with a photometric detector such as
a charge-coupled device, which has been demon-
strated in a variety of analytical systems34,71,72. The
potentially-portable means of detection can be select-
ed for on-site diagnosis, but its detection capability is
inferior to that of a photomultiplier tube (PMT)73,74.
Such problems may be compensated for via the intro-
duction of a massive transport system of the signal
generator, for signal amplification, linked to the anti-
gen-antibody reactions.

An amplification of the ECL signal has, indeed,
been achieved via the use of a number of ruthenium
molecules encapsulated within a liposome envelope
by a freezing/thawing sonication tehcnique75,76. The
liposome, activated with maleimide groups, was then
chemically coupled to the detection antibody and re-
duced to generate sulfhydryl groups such that the
liposome can function as a tracer when incorporated
into a novel immunosensor system (Figure 10)34. The
system was comprised of the antigen pad eliminating
the immuno-liposome unreacted with the analyte, and
also the signal generation compartment that produces
an ECL in proportion to the analyte concentration.
The pad was prepared via the immobilization of an
antigen (e.g., recombinant Legionella antigen) on the

surfaces of the NC membranes. The signal generation
compartment was also constructed, by positioning
two plastic supports with a glass fiber membrane
between them. Each support had a carbon electrode
(anode) with a large surface area and two-finger pat-
terned-silver electrodes (cathode), respectively, form-
ed via screen-printing.

Such a constructed analytical system has been used
to quantitatively determine the concentrations of the
analyte (e.g., Legionella antigen). The immuno-lipo-
some was combined with an aqueous specimen con-
taining the analyte in order to form the immune com-
plexes, a mixture of which was then absorbed into the
membrane strip via capillary action. Upon influx, the
immune complexes were passed through the antigen
pad and were transported into the glass fiber mem-
brane, in which the liposome particles were burst by
detergent pre-located within the membrane. This
released ruthenium molecules which were then che-
mically oxidized on the electrodes to generate an
ECL signal detectable by, for instance, a charge-
coupled device, as is shown in Figure 9. It is noted
that in cases in which the analyte was absent in the
sample, the liposome would be captured on the anti-
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gen pad, and no beacon would be generated. The
ECL signals registered at different concentrations of
analyte were found to be proportional to the analyte
dose (Figure 11). Signal-to-noise ratios representing
detection capability66 were also generated by dividing
the signals by the background. Based on a ratio of
greater than 2, the immunosensor detection limit was
determined to be 0.002 µg/mL, approximately 10
times lower than that of a colorimetric system which
uses colloidal gold as tracer34. Such a high degree of

sensitivity would result not only from the introduc-
tion of the ruthenium liposome transport system, but
also from the intrinsically low background of ECL
from the environment.

ELISA-on-a-Chip Sensor based on Cross-
Flow Chromatography

As mentioned, enzymes used as tracers provide an
enhanced signal resulting from catalytic action, as
well as variable signals that can be measured on the
basis, for example, photometry12,22, chemilumino-
metry34, and electrochemistry66. A novel enzyme im-
munosensor for POCT has been developed via a
combination of the method of immuno-chromato-
graphy with enzyme signal generation technology37.
In this sensor, the sequential reactions, namely
antigen-antibody binding and the catalytic reaction,
have been achieved in a cross-flow mode in the verti-
cal and horizontal directions, respectively. This cross-
flow chromatography concept significantly simplified
the complex procedure required for ELISA, and also
generated a highly sensitive signal.

The sequential flow system was constructed using
two groups of membrane pads, vertically-arranged
pads and horizontally-arranged pads (Figure 12, left).
The pads oriented in the vertical position comprises
four different membranes (1 to 4), connected with
each other toward capillary action, in a fashion simi-
lar to that of the conventional system (see Figure 2),
with the exception of an enzyme as a tracer rather
than colloidal gold. Two additional membrane pads (5
and 6) used to provide the enzyme substrate after the
vertical flow are employed in a horizontal arrange-
ment, and separated spatially from those in the verti-
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Figure 10. Construction of
an ECL immunosensor via
the combination of an anti-
gen pad with a signal gene-
ration compartment harbor-
ing spatially-arranged elec-
trodes screen-printed onto
each inner surfaces of the
support. A NC membrane of
the antigen pad and a glass
fiber membrane positioned
within the signal generation
compartment were superim-
posed in part. This arrange-
ment allowed for a continu-
ous wicking of an aqueous
medium and eventually ECL
signal generation in the com-
partment, as shown.
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cal arrangement as an initial step. At the time of an-
alysis, the bottom of the immuno-strip is immersed in
an analyte-containing specimen to absorb and trans-
fer the medium along the strip via lateral flow. After
the antigen-antibody reactions are completed, the two
horizontally-arranged pads are positioned at each
lateral side of the signal generation pad, respectively,
and the enzyme substrate solution is added to the
supply pad in order to initiate the horizontal flow
(Figure 12, right). As the flow passes through the sig-
nal generation pad, the enzyme reaction on the signal
generation pad is triggered, producing a signal pro-
portionate to the analyte concentration.

Using the concept of cross-flow chromatography,
an ELISA-on-a-chip (EOC), a POCT version of
ELISA, has been constructed to achieve a semi-auto-
matic shifting of the sequential reaction steps38. The
chip, which is constructed of plastic, was fabricated
via the mechanical etching of the surfaces, to offer
two distinct flow channels in both the vertical and

horizontal directions (Figure 13, left). The immuno-
strip harboring an enzyme tracer (e.g., horseradish
peroxidase) was set into the vertical compartment,
and the enzyme substrate supply channel and absorp-
tion pad were arranged horizontally. In order to an-
alyze a sample using the EOC, medium was added
for transfer along the strip via capillary action, and a
solution harboring an enzyme substrate was then
supplied across the signal generation pad (Figure 13,
right). A color signal at the antibody immobilization
site was generated in proportion to the analyte con-
centration, and a control was also used to monitor the
consistency of the assay on the same signal genera-
tion pad. The color signal was finally quantified with
a digital camera based on image capture, and the
color density of the image was digitized in the verti-
cal direction using software.

The EOC system has been applied to a variety of
detection fields including medical diagnostics (He-
patitis B virus infection37 and acute myocardial in-
farction38), biodefense (botulinum neurotoxin A77 and
Bacillus anthraces), and food tests against microbial
contamination. Typically, the dose responses of the
sensor have been evaluated using standard samples of
cardiac troponin I (cTnI), a commercially available
product from Hytest, prepared with human serum
(Figure 14, left). The signal measured via the inte-
gration of optical densities under peak value after
normalization varied in a sigmoidal shape when plott-
ed against the analyte concentration. From the calibra-
tion curve, the detection limit of the EOC sensor was
determined to be 20 times lower than that obtained
from the rapid test kit commercially available44,45,78.
The novel EOC sensor system was evaluated further
for correlation with a commercialized immunosensor,
Biosite Triage, using fluorophores as a tracer (Figure
14, right). The samples were prepared blindly by
spiking the analytes acquired from different sources,
Hytest, Cliniqa, and Randox, with a human serum.
The three groups of samples, when the EOC system
was utilized, were overestimated relative to those
acquired using the commercialized system, although
the generated slopes were approximately linear. Such
differences may result from different binding charac-
teristics of antibody pairs to cTnI used in the respec-
tive system. It has been noted that the analytical
performance of the EOC was well correlated with
those of clinically-established equipment from Beck-
man Coulter Access38.

As described herein, an EOC sensor has been
developed and was found to be capable of detecting a
minimum of 0.05 ng/mL cTnI as a model analyte,
which is highly correlated with the performance of
widely-accepted clinical equipment. The detection
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capability was found to be at least 20 times higher
than that of a conventional colorimetric system em-
ploying colloidal gold as a tracer, and was also su-
perior to that of the commercially available fluoro-
metric sensor cTnI79,80. This feature of EOC may be
attributed primarily to the low non-specific binding

of the enzyme tracer, the high reproducibility analysis
allowed for by the optimal EOC design, and the fact
that the fabrication processes optimally realizing the
concept of cross-flow immuno-chromatography. The
novel immunosensor provides several additional
advantages, namely, the generation of variable signal
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types that can be measured on the basis of, for exam-
ple, colorimetry, chemiluminometry, and electroche-
mistry38,79, depending on the enzyme-substrate pair
employed. Moreover, the sensor can be miniaturized
down to one-tenth scale, provided that the horizontal
flow is finely controlled using micro-fluidic channels
in place of a horizontal flow absorption pad.

Prospects of Immunosensor Development
for POCT

As described above, we have evaluated several im-
muno-analytical systems in different versions of an
assay kit and immunosensor, utilizing membrane strip
chromatography for their application at points of
care. Among the variety of tracers employed in the
systems, the enzyme generated highly sensitive, high-
ly reproducible assay results (e.g., 0.05 ng/mL cTnI,
complex form from Hytest), provided that it was
adopted in an EOC that realized the concept of cross-
flow immuno-chromatography (Figure 15, the first
column of the list). An immunosensor (a product of i-
STAT; Abbott Park, IL, U.S.) using an identical tracer
has been commercialized in a miniaturized form via
micro-fluidic technology, which also evidenced com-
parable detection capability (Figure 15, second colu-
mn). This, however, is capable of measuring a single
analyte per assay in the product, probably as the
result of limitations in the design of complex fluidic

channels and the transducer arrangement. As the
miniaturization of the POCT sensor is a trend in tech-
nology development in this field, we are scaling the
EOC dimension down further, to one-tenth scale, via
a top-down approach. To this end, the horizontal
absorption pad contained in the EOC (see Figure 13)
can first be replaced with micro-channels to control
the enzyme substrate supply rate precisely. Such an
approach would allow us to install an immuno-strip
narrower than 1 mm or a substitute matrix directly
impregnated into the plastic surfaces and, thus, to
achieve a miniaturized EOC.

Besides enzyme tracers, fluorophores are the most
extensively used signal generator for analyses in the
biological and medical research fields, as well as for
labeling of binders in biochip systems11,80. At least
two commercialized immunosensor systems from
Biosite (San Diego, CA, U.S.) and Response (Bur-
naby, Canada) are dedicated to the detection of bio-
markers associated with disease diagnosis or biode-
fense (Figure 15, the third column). These biosensors
confer a relatively high degree of sensitivity to the
kit. However, they require a costly detector that uti-
lizes a precision excitation/emission signal generation
process. Thus, this system should evidence long-term
durability under severe conditions, and also cannot be
used for confirmative analysis without instrumenta-
tion. Finally, magnetic beads, which have previously
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been employed for the separation of cells and pro-
teins, have been recently applied to immunoassays as
tracers that generate a highly sensitive signal, as a
part of the work of Quantum Design (San Diego, CA,
U.S.; Figure 15, the fourth column). The beads can
potentially be employed for the pre-treatment of sam-
ples in situ, in addition to the generation of magnetic
signal, but the fact that the system requires a relati-
vely expensive detector may constitute a significant
drawback.

In this review, immunosensors applicable to POCT
have been introduced and characterized with regard
to their analytical performance, in particular, detec-
tion capability and facility of quantification, using a
simple detector. A major constituent of the sensor
that controls these two properties at the same time
would be the tracer employed for signal generation.
Enzymes that have long been served as tracers for
ELISA may become a new emerging substitute for
colloidal gold, as its separate catalytic reaction for
signal generation can now be conducted quite quickly
and easily with a biochip. Fluorophores, magnetic
beads, and ECL tracers are other alternative labels for
immuno-analyses, because of their high conversion
yields of antigen-antibody bindings to physically
measurable signals. Colloidal gold, which is conven-
tionally employed as a tracer, may still prove valu-
able provided that an additional enhancement step,
such as silver intensification, is conducted. In a future
study, we will examine this technique using the same
cross-flow chromatography concept.
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